
M A N N I N G

Philipp K. Janert

FOREWORDS BY COLIN D. KELLEY

AND THOMAS WILLIAMS

IN ACTION
Understanding data with graphs

Dottie
Text Box
SAMPLE CHAPTER 2

Gnuplot in Action
by Philipp K. Janert

Chapter 2

Copyright 2009 Manning Publications

brief contents
PART 1 BASICS ..1

1 ■ Prelude: Understanding data with gnuplot 3

2 ■ Essential gnuplot 16

3 ■ Working with data 29

4 ■ Practical matters 49

PART 2 POLISHING ...65

5 ■ Doing it with style 67

6 ■ Decorations 90

7 ■ All about axes 110

PART 3 ADVANCED GNUPLOT ..131

8 ■ Three-dimensional plots 133

9 ■ Color 152

10 ■ Advanced plotting concepts 175

11 ■ Terminals in depth 200

12 ■ Macros, scripting, and batch operations 222
i

PART 4 GRAPHICAL ANALYSIS WITH GNUPLOT243

13 ■ Fundamental graphical methods 245

14 ■ Techniques of graphical analysis 273

15 ■ Coda: Understanding data with graphs 301

16

Essential gnuplot

In this chapter, we introduce gnuplot’s most important features: generating plots,
saving them to a file, and exporting graphs to common graphics file formats. In the
next chapter, we’ll talk about data transformations and the organization of data
sets. By the end of the next chapter, you’ll know most of the commands you’ll use
on a day-to-day basis.

 Are you surprised that a couple of chapters are sufficient to get us this far? Con-
gratulations, you just discovered why gnuplot is cool: it makes easy things easy, and
hard things possible. This chapter and the next cover the easy parts; as to the hard
parts... well, that’s what the rest of this book is all about.

2.1 Simple plots
Since gnuplot is a plotting program, it should come as no surprise that the most
important gnuplot command is plot. It can be used to plot both functions (such as

This chapter covers
■ Invoking gnuplot
■ Plotting functions and data
■ Saving and exporting

17Simple plots

sin(x)) and data (typically from a file). The plot command has a variety of options
and subcommands, through which we can control the appearance of the graph as well
as the interpretation of the data in the file. The plot command can even perform
arbitrary transformations on the data as we plot it.

2.1.1 Invoking gnuplot and first plots

Gnuplot is a text-based plotting program: we interact with it through command-line-like
syntax, as opposed to manipulating graphs using the mouse in a WYSIWYG fashion.
Gnuplot is also interactive: it provides a prompt at which we type our commands. When
we enter a complete command, the resulting graph immediately pops up in a separate
window. This is in contrast to a graphics programming language (such as PIC), where
writing the command, generating the graph, and viewing the result are separate activ-
ities, requiring separate tools. Gnuplot has a history feature, making it easy to recall,
modify, and reissue previous commands. The entire setup encourages you to play with
the data: making a simple plot, changing some parameters to hone in on the interest-
ing sections, eventually adding decorations and labels for final presentation, and in
the end exporting the finished graph in a standard graphics format.

 If gnuplot is installed on your system, it can usually be invoked by issuing the
command:

gnuplot

at the shell prompt. (Check appendix A for instructions on obtaining and installing
gnuplot, if your system doesn’t have it already.) Once launched, gnuplot displays a
welcome message and then replaces the shell prompt with a gnuplot> prompt. Any-
thing entered at this prompt will be interpreted as gnuplot commands until you issue
an exit or quit command, or type an end-of-file (EOF) character, usually by hitting
Control-D.

 Probably the simplest plotting command we can issue is

plot sin(x)

(Here and in the following, the gnuplot> prompt is suppressed to save space. Any
code shown should be understood as having been entered at the gnuplot prompt,
unless otherwise stated.)

 On Unix running a graphical user interface (X11), this command opens a new
window with the resulting graph, looking something like figure 2.1.

 Please note how gnuplot has selected a “reasonable” range for the x values auto-
matically (by default from -10 to +10) and adjusted the y range according to the values
of the function.

 Let’s say we want to add some more functions to plot together with the sine. We
recall the last command (using the up-arrow key or Control-P for “previous”) and edit
it to give

plot sin(x), x, x-(x**3)/6

18 CHAPTER 2 Essential gnuplot

This will plot the sine together with the linear function x and the third-order polyno-
mial x - 1/6 x3, which are the first few terms in the Taylor expansion of the sine.1 (Gnu-
plot’s syntax for mathematical expressions is straightforward and similar to the one
found in almost any other programming language. Note the ** exponentiation opera-
tor, familiar from Fortran or Perl. Appendix B has a table of all available operators
and their precedences.) The resulting plot (see figure 2.2) is probably not what we
expected.

 The range of y values is far too large, compared to the previous graph. We can’t
even see the wiggles of the original function (the sine wave) at all anymore. Gnuplot
adjusts the y range to fit in all function values, but for our plot, we’re only interested
in points with small y values. So, we recall the last command again (using the up-arrow
key) and define the plot range that we are interested in:

plot [][-2:2] sin(x), x, x-(x**3)/6

The range is given in square brackets immediately after the plot command. The first
pair of brackets defines the range of x values (we leave it empty, since we’re happy
with the defaults in this case); the second restricts the range of y values shown. This
results in the graph shown in figure 2.3.

1 A Taylor expansion is a local approximation of an arbitrary, possibly quite complicated, function in terms of
powers of x. We won’t need this concept in the rest of this book. Check your favorite calculus book if you want
to know more.

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -5 0 5 10

sin(x)

Figure 2.1 Our first plot: plot sin(x)

19Simple plots

We can play much longer with function plots, zoning in on different regions of inter-
est and trying out different functions (check the reference section in appendix B for a
full list of available functions and operators), but instead let’s move on and discuss
what gnuplot is most useful for: plotting data from a file.

-200

-150

-100

-50

 0

 50

 100

 150

 200

-10 -5 0 5 10

sin(x)
x

x-(x**3)/6

Figure 2.2 An unsuitable default plot range: plot sin(x), x, x-(x**3)/6

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-10 -5 0 5 10

sin(x)
x

x-(x**3)/6

Figure 2.3 Using explicit plot ranges: plot [][-2:2] sin(x), x, x-(x**3)/6

20 CHAPTER 2 Essential gnuplot

2.1.2 Plotting data from a file

Gnuplot reads data from text files. The data is expected to be numerical and to be
stored in the file in whitespace-separated columns. Lines beginning with a hashmark (#)
are considered to be comment lines and are ignored. Listing 2.1 shows a typical data
file containing the share prices of two fictitious companies, with the equally fictitious
ticker symbols PQR and XYZ, over a number of years.

Average PQR and XYZ stock price (in dollars per share) per calendar year
1975 49 162
1976 52 144
1977 67 140
1978 53 122
1979 67 125
1980 46 117
1981 60 116
1982 50 113
1983 66 96
1984 70 101
1985 91 93
1986 133 92
1987 127 95
1988 136 79
1989 154 78
1990 127 85
1991 147 71
1992 146 54
1993 133 51
1994 144 49
1995 158 43

The canonical way to think about this is that the x value is in column 1 and the y value
is in column 2. If there are additional y values corresponding to each x value, they are
listed in subsequent columns. (We’ll see later that there’s nothing special about the
first column. In fact, any column can be plotted along either the x or the y axis.)

 This format, simple as it is, has proven to be extremely useful—so much so that
long-time gnuplot users usually generate data in this way to begin with. In particular,
the ability to keep related data sets in the same file is a big help (so that we don’t
need to keep PQR’s stock price in a separate file from XYZ’s, although we could if we
wanted to).

 While whitespace-separated numerical data is what gnuplot expects natively,
recent versions of gnuplot can parse and interpret significant deviations from this
norm, including text columns (with embedded whitespace if enclosed in double
quotes), missing data, and a variety of textual representations for calendar dates, as
well as binary data (see chapter 4 for a more detailed discussion of input file formats,
and chapter 7 for the special case when one of the columns represents date/time
information).

Listing 2.1 A typical data file: stock prices over time

21Simple plots

 Plotting data from a file is simple. Assuming that the file shown in listing 2.1 is
called prices, we can simply type

plot "prices"

Since data files typically contain many different data sets, we’ll usually want to select
the columns to be used as x and y values. This is done through the using directive to
the plot command:

plot "prices" using 1:2

This will plot the price of PQR shares as a function of time: the first argument to the
using directive specifies the column in the input file to be plotted along the horizon-
tal (x) axis, while the second argument specifies the column for the vertical (y) axis. If
we want to plot the price of XYZ shares in the same plot, we can do so easily (as in fig-
ure 2.4):

plot "prices" using 1:2, "prices" using 1:3

By default, data points from a file are plotted using unconnected symbols. Often this
isn’t what we want, so we need to tell gnuplot what style to use for the data. This is
done using the with directive. Many different styles are available. Among the most
useful ones are with linespoints, which plots each data point as a symbol and also
connects subsequent points, and with lines, which just plots the connecting lines,
omitting the individual symbols.

plot "prices" using 1:2 with lines,

➥ "prices" using 1:3 with linespoints

 40

 60

 80

 100

 120

 140

 160

 180

 1975 1980 1985 1990 1995

"prices" u 1:2
"prices" u 1:3

Figure 2.4 Plotting from a file: plot "prices" using 1:2, "prices" using 1:3

22 CHAPTER 2 Essential gnuplot

This looks good, but it’s not clear from the graph which line is which. Gnuplot auto-
matically provides a key, which shows a sample of the line or symbol type used for each
data set together with a text description, but the default description isn’t very mean-
ingful in our case. We can do much better by including a title for each data set as
part of the plot command:

plot "prices" using 1:2 title "PQR" with lines,

➥ "prices" using 1:3 title "XYZ" with linespoints

This changes the text in the key to the string given as the title (figure 2.5). The title
has to come after the using directive in the plot command. A good way to memorize
this order is to remember that we must specify the data set to plot first and provide the
description second: define it first, then describe what you defined.

 Want to see how PQR’s price correlates with XYZ’s? No problem; just plot one
against the other, using PQR’s share price for x values and XYZ’s for y values, like so:

plot "prices" using 2:3 with points

We see here that there’s nothing special about the first column. Any column can be
plotted against either the x or the y axis; we just pick whichever combination we need
through the using directive. Since it makes no sense to connect the data points in the
last plot, we’ve chosen the style with points, which just plots a symbol for each data
point, but no connecting lines (figure 2.6).

 40

 60

 80

 100

 120

 140

 160

 180

 1975 1980 1985 1990 1995

PQR
XYZ

Figure 2.5 Introducing styles and the title keyword: plot "prices" using
1:2 title "PQR" with lines, "prices" using 1:3 title "XYZ" with
linespoints

23Simple plots

A graph like figure 2.6 is known as a scatter plot and can show correlations between two
data sets. In this graph, we can see a clear negative correlation: the better PQR is
doing, the worse XYZ’s stock price develops. We’ll revisit scatter plots and their uses
later in chapter 13.

 Now that we’ve seen the most important, basic commands, let’s step back for a
moment and quickly introduce some creature comforts that gnuplot provides to the
more experienced user.

2.1.3 Abbreviations and defaults

Gnuplot is very good at encouraging iterative, exploratory data analysis. Whenever we
complete a command, the resulting graph is shown immediately and all changes take
effect at once. Writing commands isn’t a different activity from generating graphs,
and there’s no need for a separate viewer program. (Graphs are also created almost
instantaneously; only for data sets including millions of points is there any noticeable
delay.) Previous commands can be recalled, modified, and reissued, making it easy to
keep playing with the data.

 There are two more features which gnuplot offers to the more proficient user:
abbreviations and sensible defaults.

 Any command and subcommand or option can be abbreviated to the shortest,
nonambiguous form. So the command

plot "prices" using 1:2 with lines,

➥ "prices" using 1:3 with linespoints

 40

 60

 80

 100

 120

 140

 160

 180

 40 60 80 100 120 140 160

"prices" u 2:3

Figure 2.6 Any column can be used for either x or y axis: plot "prices"
using 2:3 with points

24 CHAPTER 2 Essential gnuplot

would much more likely have been issued as

plot "prices" u 1:2 w l, "prices" u 1:3 w lp

This compact style is very useful when doing interactive work and should be mastered.
From here on, I’ll increasingly start using it. (A list of the most frequently used abbre-
viations can be found in table 2 in the section on conventions in the front of the book.)

 But this is still not the most compact form possible. Whenever a part of the com-
mand isn’t given explicitly, gnuplot first tries to interpolate the missing values with val-
ues the user has provided, and, failing that, falls back to sensible defaults. We’ve
already seen how gnuplot defaults the range of x values to [-10:10], but adjusts the y
range to include all data points.

 Whenever a filename is missing, the most recent filename is interpolated. We can
use this to abbreviate the last command even further:

plot "prices" u 1:2 w l, "" u 1:3 w lp

Note that the second set of quotation marks must be there.
 In general, any user input (or part of user input) will remain unaffected until

explicitly overridden by subsequent input. The way the filename is interpolated in the
preceding example is a good example for this behavior. In later chapters, we’ll see
how options can be built up step by step, by subsequently providing values for differ-
ent suboptions. Gnuplot helps to keep commands short by remembering previous
commands as much as possible.

 One last example concerns the using directive. If it’s missing entirely and the data
file contains multiple columns, gnuplot plots the second column versus the first (this
is equivalent to using 1:2). If a using directive is given, but lists only a single column,
gnuplot will use this column for y values and provide x values as integers starting at
zero. This is also what happens when no using is given and the data file contains only
a single column.

 Let’s close this section with a general comment regarding the syntax of gnuplot
commands. Gnuplot syntax is mostly positional, not keyword oriented. This makes for
compact commands, since the meaning of an abbreviation can be inferred from the
position within the command. The price to pay is that occasionally subcommands that
are expected earlier in the command need to be specified, even if we do not want to
change their default settings. In this case, they are left blank. We’ve encountered this
in the way empty brackets for the x range have to be supplied, even if we only want to
change the y range, or in the way empty quotes indicate that the previous filename
should be used again.

2.2 Saving and exporting
There are two ways to save our work in gnuplot: we can save the gnuplot commands
used to generate a plot, so that we can regenerate the plot at a later time. Or we can
export the actual graph to a file in one of a variety of supported graphics file formats,
so that we can print it or include it in web pages, text documents, or presentations.

25Saving and exporting

2.2.1 Saving and loading commands

If we save the commands that we used to generate a plot to file, we can later load them
again and in this way regenerate the plot where we left off. Gnuplot commands can be
saved to a file simply using the save command:

save "graph.gp"

This will save the current values of all options, as well as the most recent plot com-
mand, to the specified file. This file can later be loaded again using the load command:

load "graph.gp"

The effect of loading a file is the same as issuing all the contained commands (includ-
ing the actual plot command) at the gnuplot prompt.

 An alternative to load is the call command, which is similar to load, but also takes
up to 10 additional parameters after the filename to load. The parameters are avail-
able inside the loaded file in the variables $0 through $9. Strings are passed without
their enclosing quotes, and the special variable $# holds the number of parameters to
call. We can use call to write some simple scripts for gnuplot.

 Command files are plain text files, usually containing exactly one command per
line. Several commands can be combined on a single line by separating them with a
semicolon (;). The hashmark (#) is interpreted as a comment character: the rest of
the line following a hashmark is ignored. The hashmark isn’t interpreted as a com-
ment character when it appears inside quoted strings.

 The recommended file extension for gnuplot command files is .gp, but you may
also find people using .plt instead.

 Since command files are plain text files, they can be edited using a regular text edi-
tor. It’s sometimes useful to author them manually and load them into gnuplot, for
instance to set up preferences or to imitate a limited macro capability (we’ll give an
example later in the chapter).

 We’ll discuss command files in more detail in chapter 12 on batch operations and
user configurations.

2.2.2 Exporting graphs

As we’ve just seen, saving a set of plotting commands to a file is very simple. Unfortu-
nately, exporting a graph in a file format suitable for printing is more complicated. It’s
not actually difficult, but unnecessarily cumbersome and prone to errors of omission.
In this section, we’ll first look at the steps required to export a printable graph from
gnuplot; then we’ll discuss the ways this process can go wrong. Finally, I’ll show you a
simple script that takes most of the pain out of the experience.

 For any graph we want to generate (using gnuplot or anything else), we need to
specify two things: the format of the graph (GIF, JPG, PNG, and so on) and the output
device (either a file or the screen). In gnuplot, we do this using the set command:

set terminal png # choose the file format
set output "mygraph.png" # choose the output device

26 CHAPTER 2 Essential gnuplot

We’ll discuss the set command in much more detail in chapter 4. For now, it’s enough
to understand that it sets a parameter (such as terminal) to a value. However, and this
is often forgotten, it does not generate a plot! The only commands to do so are plot,
splot (which is used for three-dimensional graphs, which we’ll discuss in chapter 8),
and replot (which simply repeats the most recent plot or splot command).

 So, with this in mind, the complete sequence to export a graph from gnuplot and
to resume working is shown in listing 2.2.

plot exp(-x**2) # some plot command
set terminal png # select the file format
set output "graph.png" # specify the output filename
replot # repeat the most recent plot command,

with the output now going to the
specified file.

set terminal x11 # restore the terminal settings
set output # send output to the screen again,

by using an empty filename.

This example demonstrates an important point: after exporting to a file, gnuplot does
not automatically revert back to interactive mode—instead, all further output will be
directed to the specified file. Therefore, we need to explicitly restore the interactive
terminal (x11 in this example) and the output device. (The command set output
without an argument sends all output to the interactive device, usually the screen.)
This should come as no surprise. As we’ve seen before, gnuplot remembers any previ-
ous settings, and so neither the terminal nor the output setting change until we
explicitly assign them a different value.

 Nevertheless, this behavior is rather different than what we’ve come to expect from
user interfaces in most programs: we usually do not have to restore the interactive ses-
sion explicitly after exporting to a file. It’s also unexpected that three separate com-
mands are required to generate a file (set terminal, set output, and replot),
making it easy to forget one.

 It’s helpful to understand the technical and historical background for this particu-
lar design. Gnuplot was designed to be portable across many platforms, at a time (late
1980s!) when graphic capabilities were much less dependable than today. In fact, it
wasn’t even safe to assume that the computer had an interactive graphics terminal at
all (only an attached hardware plotter, for example). So all graphics generation was
encapsulated into the terminal abstraction. And since it wasn’t safe to assume that
every installation would have a graphics-capable interactive terminal as well as a plot-
ter or a file-based output device, the same terminal abstraction was used for both the
interactive session as well as the printable export, requiring you to switch between dif-
ferent modes in a way that seems so cumbersome today.

 Nevertheless, what we really want most of the time is a simple export routine,
which takes the name of a file to export to, as well as the desired file format, and does
all the required steps in one fell swoop. In the next section, I show you how to build
one yourself.

Listing 2.2 The complete workflow to generate a PNG file from gnuplot

27Saving and exporting

2.2.3 One-step export script

The multistep process we just described to generate printable graphics from gnuplot
is clearly a nuisance. Luckily, we can use the call command introduced earlier to
bundle all required steps into one handy macro.

 The call command executes all commands in a single file. Therefore, we can put
all commands required to generate (for example) a PNG file and to restore the gnu-
plot session back to its original state into a command file, which we can then invoke
through a single call command. And because call can take arguments, we can even
pass the name of the desired output file as part of the same command.

 If the commands shown in listing 2.3 are placed into a file, this file can be exe-
cuted using call and will write the most recent plot to a PNG file and restore the ini-
tial session to its original state.

set terminal push # save the current terminal settings
set terminal png # change terminal to PNG
set output "$0" # set the output filename to the first option
replot # repeat the most recent plot command
set output # restore output to interactive mode
set terminal pop # restore the terminal

Here we’ve used the two pseudoterminals push and pop to help with the back-and-forth
between the interactive and file terminals. The former (push) saves the current termi-
nal settings onto a stack; the latter (pop) restores the terminal to the state saved on the
stack. Neither makes any assumptions about the choice of interactive terminal, and
therefore both can safely be used in scripts that must be portable across architectures.

 Assuming the file shown in listing 2.3 was named export.gp in the current direc-
tory, we would call it like this, to write the current plot to a file called graph.png:

call "export.gp" "graph.png"

Here, both arguments are quoted. Quoting the second argument isn’t strictly neces-
sary, but highly recommended to avoid unexpected parsing of the output filename.
The quotes are stripped before the argument is made available to the command file in
the $0 variable.

 Before leaving this section, one last word of advice: always save the commands used
to generate a plot to a command file before exporting to a printable format. Always. It’s
almost guaranteed that you’ll want to regenerate the plot to make a minor modifica-
tion (such as fixing the typo in a label, or adding one more data set, or adjusting the
plot range slightly) at a later time. This can only be done from the commands saved to
file using save, not from plots exported to a graphics file. In chapter 11, section 11.1,
I’ll give an improved version of the export script which does both at the same time—
that’s how I generate all of my graphs.

Listing 2.3 A useful script to export the current plot to file

28 CHAPTER 2 Essential gnuplot

2.3 Summary
In this chapter, we learned how to do the most important things with gnuplot: plot-
ting, saving, and exporting. In detail, we discussed

■ How to plot functions or data with the plot command: plot sin(x)
■ How to restrict the plot range using bracket notation: plot [0:5] sin(x)
■ How to select which columns from a data file to plot through using: plot

"data" using 1:2

■ How to save our work to file with the save command and how to load it again
using load

■ How to export a graph to a printable file format using set output, set termi-
nal, and replot

■ How to write simple scripts and use them through the call command

This means that we can do the three most important things for day-to-day work
already: generate a plot, save it to file, and export it. In the next chapter, we’ll learn
about further things we can do with data in gnuplot: smoothing and filtering.

ISBN 13: 978-1-933988-39-9
ISBN 10: 1-933988-39-8

9 7 8 1 9 3 3 9 8 8 3 9 9

99435

G
nuplot is an open source graphics program that helps you
analyze, interpret, and present numerical data. Available
for Unix, Mac, and Windows, it is well maintained, very

mature, and ... totally free.

Gnuplot in Action is a comprehensive tutorial written for all
gnuplot users: data analysts, computer professionals, scientists,
researchers, and others. It shows how to apply gnuplot to data
analysis problems. It gets into tricky and poorly documented
areas. You’ll quickly move from basic charts to advanced graph-
ics, mastering powerful techniques like multi-dimensional
and false-color plots. You’ll also learn scripting techniques for
unattended batch jobs or how to use gnuplot to generate web
graphics on demand.

Th is book does not require programming skills, nor previous
knowledge of gnuplot.

What’s Inside
Generate simple and complex graphics
Graphic methods to understand data
Scripting and advanced visualization

A programmer and data analyst, Philipp K. Janert has been a
gnuplot power user for over 15 years, in business and academic
environments. He holds a Ph.D. in theoretical physics.

For online access to the author and a free ebook for owners
of this book, go to manning.com/GnuplotinAction

$34.99 / Can $43.99 [INCLUDING eBOOK]

Gnuplot IN ACTION Philipp K. Janert

OPEN SOURCE/DATA VISUALIZATION

FOREWORDS BY COLIN D. KELLEY AND THOMAS WILLIAMS

“Knee-deep in data? Th is is your
 guidebook to exploring it with
 gnuplot.”
 —Austin King
 Senior Web Developer, Mozilla

“Sparkles with insight about
 visualization, image perception,
 and data exploration.”
 —Richard B. Kreckel, Hacker and
 Physicist, GiNaC.de

“Incredibly useful for begin-
 ners—indispensible for
 advanced users.”
 —Mark Pruett, Systems Architect
 Dominion

“Bridges the gap between
 gnuplot’s reference manual
 and real-world problems.”
 —Mitchell Johnson
 Soft ware Developer, Border Stylo

“A Swiss Army knife for
 plotting data.”
 —Nishanth Sastry, Computer
 Laboratory, University of
 Cambridge/IBM

M A N N I N G

SEE INSERT

	BriefTOC.pdf
	brief contents

